Compact RGBD Surface Models Based on Sparse Coding
نویسندگان
چکیده
In this paper, we describe a novel approach to construct compact colored 3D environment models representing local surface attributes via sparse coding. Our method decomposes a set of colored point clouds into local surface patches and encodes them based on an overcomplete dictionary. Instead of storing the entire point cloud, we store a dictionary, surface patch positions, and a sparse code description of the depth and RGB attributes for every patch. The dictionary is learned in an unsupervised way from surface patches sampled from indoor maps. We show that better dictionaries can be learned by extending the K-SVD method with a binary weighting scheme that ignores undefined surface cells. Through experimental evaluation on real world laser and RGBD datasets we demonstrate that our method produces compact and accurate models. Furthermore, we clearly outperform an existing state of the art method in terms of compactness, accuracy, and computation time. Additionally, we demonstrate that our sparse code descriptions can be utilized for other important tasks such as object detection.
منابع مشابه
Rice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملOnline Object Tracking Based on Depth Image with Sparse Coding
Online object tracking is a challenging problem because of changing environment including diverse illumination and occlusion conditions. The emergence of commercial real-time depth cameras like Kinect make online RGBD-based object tracking algorithm become a focus of research. In this paper, we propose a robust online depth image-based object tracking method with sparse coding. We introduce sig...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013